26 A26

PREPARATION AND CHARACTERIZATION OF VANADOCEN(IV)
HEXAFLUOROARSENATE COMPLEXES AND THE HF CATALYZED
OXIDATION TO VANADOCENIUM(V) SPECIES

P. K. Gowik and T. M. Klapötke

Institut für Anorganische und Analytische Chemie, Technische Universität Berlin, D-W-1000 Berlin 12 (Germany)

Whereas in the Reaction of ${\rm Cp_2VCl_2}$ (${\rm Cp} = {\rm n}^5 - {\rm C}_5{\rm H}_5$) with pure ${\rm AsF}_5$ (eq. 1a,b) chloride is oxidized to yield ${\rm Cl_2}$, ${\rm AsF}_3$ and ${\rm Cp_2VCl}({\rm AsF}_6)$ traces of anhydrous HF facilitate the (thermodynamically favoured) oxidation of vanadium to give ${\rm [Cp_2VCl_2]^+[AsF_6]^-}$ in 98% yield and ${\rm AsF}_3$ (eq. 2). Similarly ${\rm Cp_2V(AsF}_6)_2$ is oxidized by ${\rm AsF}_5$ in the presence of of HF to yield ${\rm [Cp_2V(AsF}_6)_2]^+[{\rm AsF}_6]^-$ and ${\rm AsF}_3$ but ${\rm Cp_2V(AsF}_6)_2$ does not react with pure ${\rm AsF}_5$ in ${\rm SO}_2$ at room temperature.

$$2 \operatorname{Cp_2VCl_2} + 3 \operatorname{AsF_5} \longrightarrow 2 \operatorname{Cp_2VCl(AsF_6)} + \operatorname{AsF_3} + \operatorname{Cl_2}$$
 (1a)

$$Cp_2VCl_2 + 3 AsF_5 - Cp_2V(AsF_6)_2 + Cl_2 + AsF_3$$
 (1b)

$$2 \text{ Cp}_2 \text{VX}_2 + 3 \text{ AsF}_5 \xrightarrow{\text{HF}} 2 [\text{Cp}_2 \text{VX}_2]^+ [\text{AsF}_6]^- + \text{AsF}_3$$
 (2)
 $X = \text{Cl}, \text{AsF}_6$

The structure of $\mathrm{Cp_2V(SbF_6)_2}$ and $\mathrm{[Cp_2VCl_2]^+[AsF_6]^-}$ has been determined by a X-ray diffraction study. The paramagnetic species $\mathrm{Cp_2V(AsF_6)_2}$, $\mathrm{Cp_2V(SbF_6)_2}$ and $\mathrm{Cp_2VCl(AsF_6)}$ were characterized by e.p.r. spectroscopy on polycrystalline samples and in THF, $\mathrm{CH_2Cl_2}$ and $\mathrm{SO_2}$ solution.

<u>Lit.:</u> F. H. Görlitz, P. K. Gowik, T. M. Klapötke, D. Wang, R. Meier and J. v. Welzen, J. Organomet. Chem., in the press.